Media coverage

Inhibition of p300 impairs Foxp3+ T regulatory cell function and promotes antitumor immunity

2023-08-10 14:33:01

7cb3e95c1cd488803a3adbf7044ba171.png

Abstract

Forkhead box P3 (Foxp3)+ T regulatory (Treg) cells maintain immune homeostasis and limit autoimmunity but can also curtail host immune responses to various types of tumors1,2. Foxp3+ Treg cells are therefore considered promising targets to enhance antitumor immunity, and approaches for their therapeutic modulation are being developed. However, although studies showing that experimentally depleting Foxp3+ Treg cells can enhance antitumor responses provide proof of principle, these studies lack clear translational potential and have various shortcomings. Histone/protein acetyltransferases (HATs) promote chromatin accessibility, gene transcription and the function of multiple transcription factors and nonhistone proteins3,4. We now report that conditional deletion or pharmacologic inhibition of one HAT, p300 (also known as Ep300 or KAT3B), in Foxp3+ Treg cells increased T cell receptor–induced apoptosis in Treg cells, impaired Treg cell suppressive function and peripheral Treg cell induction, and limited tumor growth in immunocompetent but not in immunodeficient mice. Our data thereby demonstrate that p300 is important for Foxp3+ Treg cell function and homeostasis in vivo and in vitro, and identify mechanisms by which appropriate small-molecule inhibitors can diminish Treg cell function without overtly impairing T effector cell responses or inducing autoimmunity. Collectively, these data suggest a new approach for cancer immunotherapy.